Collaborative Research: SWIFT: Al-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning

Principal Investigators:

Arjuna Madanayake (Florida International University FIU, 2229471)
Sirani K. Perera (Embry Riddle Aeronautical University ERAU, 2229473)
Francesco Restuccia (Northeastern University, 2229472)
Houbing Song (University of Maryland, Baltimore County UMBC, 2229473)

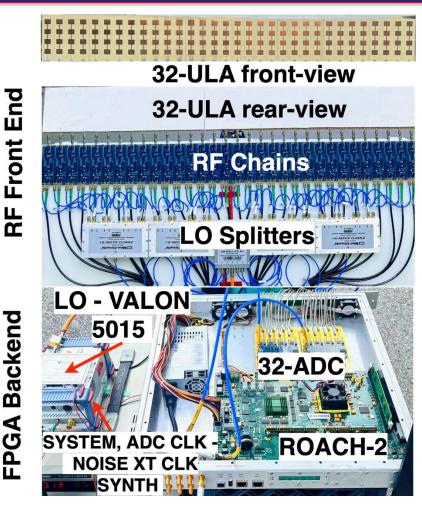
VISION: Continual-Learning Al-Perception and Sensing of Spectrum

Multi-beams, Adaptive Nulls, Digital Systolic Arrays, Fast Algorithms, Al Theory, Deep Learning, System Integration, Testbeds in FR1-FR3 Band

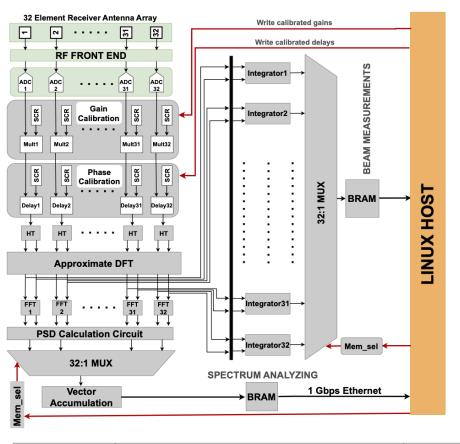
Graduate Students: Gayani Rathnasekara (FIU, PhD), Umesha Kumarasiri (FIU, PhD), Sivakumar Sivasankar (FIU, PhD), Hansaka Aluvihare (ERAU, MS), Varun Magotra (UMBC, MS) and Franchesco Pessia (Northeastern, PhD)

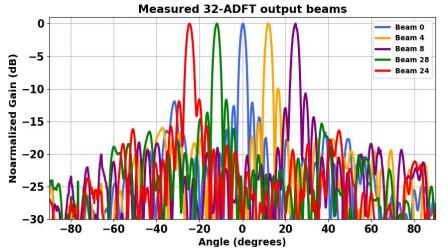
Spectral Array Processors for Sensing and Al-Perception

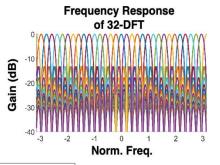
- Sensing and Al-perception of spectrum
- Multi-beams and adaptive null-formation
- Modulation recognition (RadioML2018.a)
- Temporal channelization @100 kHz res over 32 beams
- Phased array
 - 32 elements, 5.7-5.8 GHz
 - 4-element sub-arrays
- RF chains (designed by students)
 - Filtering Bandpass (4.7 6 GHz)
 - LO 5.75 GHz spilt across 32 channels
- FPGA backend ROACH-2
 - 2 x ADC16x250-8 (8-bit precision)
 - Xilinx Virtex6 Sx475t
 - PPC Ethernet Interface at 1Gbps

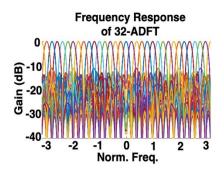


FPGA-Spectral Al-Perception in Space and Time



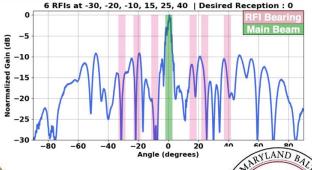




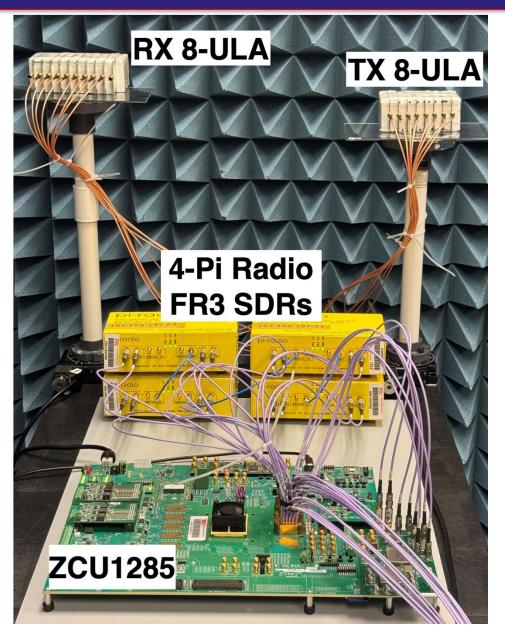


Source position	Results with beamforming		Results without
& modulation	Prediction from beam 0	Prediction from beam 11	beamforming
At 0° – 16PSK	16PSK - 4986 (99.7%)	16QAM - 4705 (94.1%)	16PSK - 0 (0%)
At 40° – 16QAM			16QAM - 1 (0.02%)
At 0° – 8ASK	8ASK - 3418 (68.4%)	16QAM - 3980 (79.6%)	8ASK - 405 (8.1%)
At 40° – 16QAM			16QAM - 4 (0.08%)
At 0° – BPSK	BPSK - 5000 (100%)	16QAM – 4375 (87.5%)	BPSK – 2657 (53.1%)
At 40° – 16QAM			16QAM - 0 (0%)

- Madanayake, A., Kumarasiri, U., Sivasankar, S., Lawrance, K., Gayanath, B., Silva, H., Mandal, S., and Cintra, R. J., "Real-time 5.7–5.8 GHz 32beam approximate discrete Fourier transform spectrum sensor for RF perception on Xilinx Sx475T", IEEE Transactions on Circuits and Systems I: Regular Papers.
- Kumarasiri, U., Sivasankar, S., Weerasooriya, H., Silva, H., Edussooriya, C., Ariyarathna, V., Restuccia, F., & Madanayake, A, "RF antijamming via multi-level Howells-Applebaum nullforming: 32-channels, 5.8 GHz/100 MHz/beam on Xilinx Sx475T FPGA", IEEE Journal of Radio Frequency Identification, 2025.
- Kumarasiri, U., Sivasankar, S., Edussooriya, C., Ariyarathna, V., and Madanayake, A. "A 32-Channel Fully-Digital Adaptive Applebaum Aperture at 5.8 GHz for Array RF Sensing". Proceedings of the 2024 IEEE International Conference on RFID Technology and Applications (RFID-TA)



FIU Ongoing Work – FR3 Spectral Al Perceptions

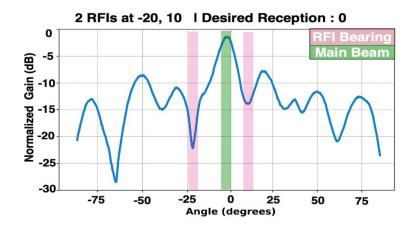


Phased Array

- 8-Vivaldi wideband elements (6-24 GHz)
- 4-Pi Radio FR3 SDR Boxes

FPGA Backend

- AMD Xilinx ZCU-1285 RF-SoC
- 1GHz of Instantaneous BW



FR3 Nulling at 10.7 GHz at the presence of 2 RFIs

Kumarasiri, U., Roshnan, B., Sivasankar, S., Zekios, C. L., Madanayake, A., Edussooriya, C. U. S., Rangan, S., and Dhananjay, A., "X-band adaptive Applebaum null-forming array processor on Xilinx Sx475T FPGA", Proceedings of the 19th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization (WiNTECH 2025) [Accepted]

A Low-complexity LSTM (S-LSTM) Network to Realize Multi-beam Beamformers: Dr. Sirani Perera, ERAU

Key papers:

H. Aluvihare, C. Shanahan, S. M. Perera, S. Sivasankar, U. Kumarasiri, A. Madanayake, and X. Li, A Low-Complexity LSTM Network to Realize Multibeam Beamforming, the proceedings of 2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), (2024).

H Aluvihare, S. Sivasankar, X. Li, <u>A. Madanayake, and S. M. Perera</u>, *A Low-complexity Structured Neural Network Approach to Intelligently Realize Wideband Multi-Beam Beamformers*, in *IEEE Journal of Radio Frequency Identification*, doi: 10.1109/JRFID.2025.3602901

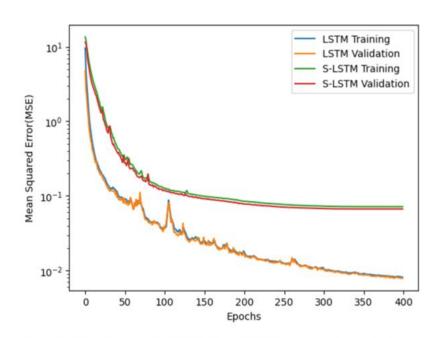


Fig. 4: Training and Validation MSE comparison between LSTM and S-LSTM models over 400 epochs. The LSTM model (blue and orange) demonstrates a higher initial MSE, while S-LSTM (green and red) indicates efficient convergence with fewer variations, particularly in the early epochs.

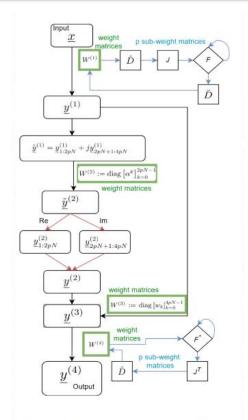
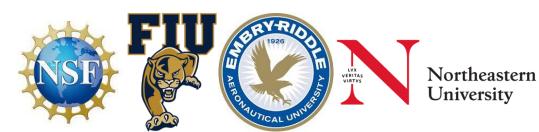
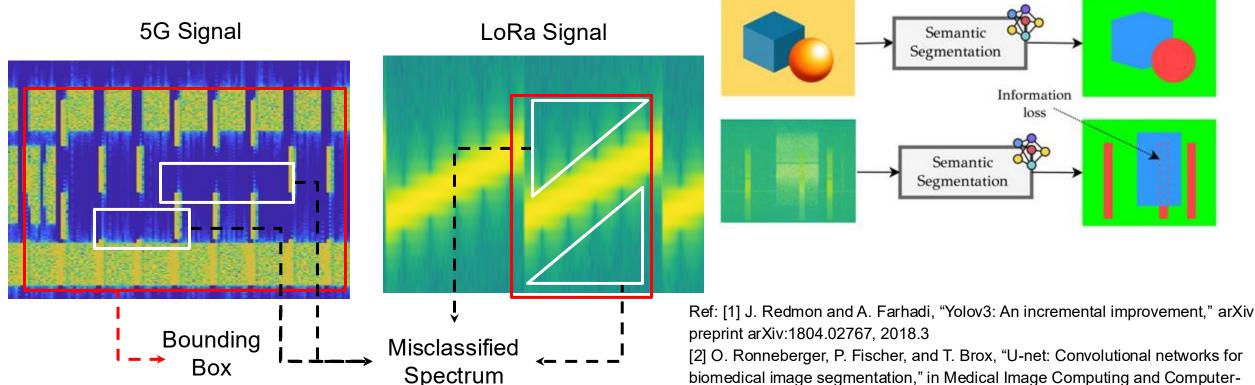


Fig. 3. The forward propagation of the StNN archites \underline{x} , output $\underline{y}^{(4)}$, the weight matrices $W^{(1)},W^{(2)},W^{(3)},$ is weight matrices $\tilde{D}_i,J,\tilde{D}_i$ complemented by the recursion F^* as shown in equations (T1) and (T2).



AI/ML for Spectrum Access: Spectrum Segmentation: Dr. Francesco Restuccia, Northeastern University

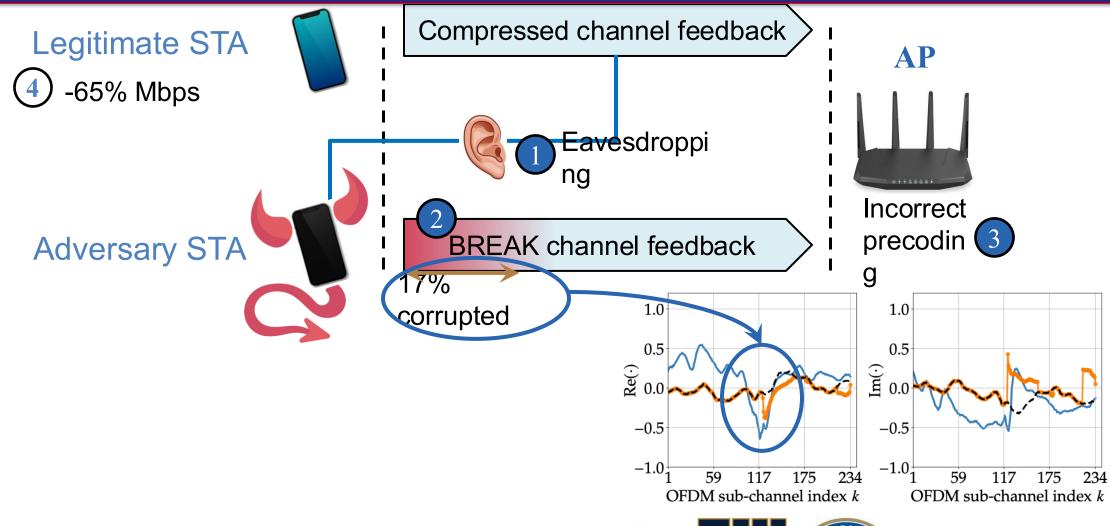


Object detection cannot achieve fine-grained granularity for spectrum sensing

[2] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for

biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, Springer, 2015.

The BREAK Attack to MU-MIMO



Ref: F. Meneghello, F. Gringoli, M. Cominelli, M. Rossi and F. Restuccia, "How to BREAK MU-MIMO Precoding in IEEE 802.11 Wi-Fi Networks", **IEEE INFOCOM 2025 Best Paper Award**

Explainable Al: Enhancing Interpretability in Al-Driven Spectrum Sensing: Dr. Houbing Song, UBMC

Explainability Challenges in Deep Learning Models

- "Black Box" Models: Deep neural networks often lack transparency
- Trust & Validation Issues: In critical applications (military, safety), a decision must be explainable.
 - The inability to understand DL decisions **undermines trust** and acceptance. Operators need insight to validate that the Al isn't focusing on wrong cues (e.g., noise artifacts).
- **No Continuous Learning:** Standard trained models are static; trying to update them with new data typically causes **catastrophic forgetting**.
- **Need for Interpretable, Adaptive AI:** The goal is AI that explains why it chose a classification and can learn lifelong, improving with new signals without forgetting the old.

Proposed Solution

Introduce a **Zero-Bias Neural Network (ZBNN)** that replaces the penultimate layer with a cosine similarity-based "zero-bias" dense layer to enhance transparency.

- Dataset & Setup: Evaluate on RadioML
 2016.10A dataset (11 modulations, analog & digital signals across various SNRs) using identical training setups for ZBNN and a baseline CNN.
- Key Result: ZBNN achieves accuracy on par with a conventional CNN (~63% vs ~65%), demonstrating explainability without sacrificing performance. It shows promise as a building block for XAI in spectrum sensing.

Ref: V. Magotra, S. M. Perera, A. Madanayake and H. H. Song, "Explainable Al for Spectrum Sensing," 2025 34th International Conference on Computer Communication and Networks (ICCCN), Tokyo, Japan, 2025, pp. 1-6, doi: 10.1109/ICCCN65249.2025.11133914.

